Hierarchical order of critical residues on the immunity-determining region of the Im7 protein which confer specific immunity to its cognate colicin.
نویسندگان
چکیده
The directed mutagenesis study of the Im7 protein of colicin E7 revealed that three residues, D31, D35, and E39, located in the loop 1 and helix 2 regions of the protein were critical for initiating the complex formation with its cognate colicin E7. Interestingly, the importance of these three critical residues in conferring specific immunity to its own colicin was exhibited in a hierarchical order, respectively. Moreover, we found that existence of the three critical residues was common among the DNase-type Im proteins. Most likely the three residues of the DNase-type immunity proteins are critical for initiating the unique protein-protein interactions with their cognate colicin. In addition, replacement of the helix 2 of Im7 by the corresponding region of Im8 produced a phenotype of the mutant protein very similar to that of Im8. This result suggests that the DNase-type Im proteins indeed share a "homologous-structural framework" and evolution of the Im proteins may be engendered by minor amino acid changes in this specific immunity-determining region without causing structural alteration of the proteins.
منابع مشابه
The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein.
BACKGROUND Colicin E7 (ColE7) is one of the bacterial toxins classified as a DNase-type E-group colicin. The cytotoxic activity of a colicin in a colicin-producing cell can be counteracted by binding of the colicin to a highly specific immunity protein. This biological event is a good model system for the investigation of protein recognition. RESULTS The crystal structure of a one-to-one comp...
متن کاملEngineering of the Escherichia coli Im7 immunity protein as a loop display scaffold.
Protein scaffolds derived from non-immunoglobulin sources are increasingly being adapted and engineered to provide unique binding molecules with a diverse range of targeting specificities. The ColE7 immunity protein (Im7) from Escherichia coli is potentially one such molecule, as it combines the advantages of (i) small size, (ii) stability conferred by a conserved four anti-parallel alpha-helic...
متن کاملUltraviolet resonance Raman studies reveal the environment of tryptophan and tyrosine residues in the native and partially folded states of the E colicin-binding immunity protein Im7.
Understanding the nature of partially folded proteins is a challenging task that is best accomplished when several techniques are applied in combination. Here we present ultraviolet resonance Raman (UVRR) spectroscopy studies of the E colicin-binding immunity proteins, Im7* and Im9*, together with a series of variants of Im7* that are designed to trap a partially folded state at equilibrium. We...
متن کاملA structural comparison of the colicin immunity proteins Im7 and Im9 gives new insights into the molecular determinants of immunity-protein specificity.
We report the first detailed comparison of two immunity proteins which, in conjunction with recent protein engineering data, begins to explain how these structurally similar proteins are able to bind and inhibit the endonuclease domain of colicin E9 (E9 DNase) with affinities that differ by 12 orders of magnitude. In the present work, we have determined the X-ray structure of the Escherichia co...
متن کاملComputational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein-protein interface.
The redesign of protein-protein interactions is a stringent test of our understanding of molecular recognition and specificity. Previously we engineered a modest specificity switch into the colicin E7 DNase-Im7 immunity protein complex by identifying mutations that are disruptive in the native complex, but can be compensated by mutations on the interacting partner. Here we extend the approach b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical and biophysical research communications
دوره 264 1 شماره
صفحات -
تاریخ انتشار 1999